Genomics & Epigenomics in Prostate Cancer:

Toward the Identification of New Candidate Molecular Targets

Tomonori Habuchi, M.D. Department of Urology

Akita University Graduate Schoool of Medicine

Identification of Genetic, Epigenetic and Biological Alterations in Cancer Cells and Patients

Candidate Prostate Cancer Genes and Chromosomal Loci

- from Familial/Hereditary Prostate Cancer -

Candidate Prostate Cancer Genes from Familial/Hereditary Prostate Cancer

Promising, but these cases cover only 3 – 5% of all prostate cancer patients

Genetic Polymorphisms

DNA sequence is 99.9 % identical among individuals.0.1 % DNA sequence variation cuases inter-individual remarkable differences.

SNP (Single Nucleotide Polymorphism) No.= 3-10 million

Candidate Prostate Cancer Genes and Chromosomal Loci

- from Genome-Wide Association Study (GWAS) -

Candidate Prostate Cancer Loci *from* **Genome-Wide Association Studies**

Promising, but most candidate loci are associated with a higher risk below 1.3.

May be time consuming and difficult to apply the findings to the clinical settings.

DNA Polymorphism Anlysis to Identify Candidate Genes for Prostate Cancer Progression

Cancer Specific Survival in 122 Metastatic Prostate Cancer (D2) Patients

Background

- The prognosis of metastatic prostate cancer significantly differs among individuals.
- While various clinical and biochemical prognostic factors have been suggested, host genetic factors may also affect the progression and response to the treatments.
- Genetic polymorphisms may be good prognostic predictors of metastatic prostate cancer patients.

Materials and Methods

- 122 prostate cancer patients with bone metastasis at the diagnosis Metastasis confirmed by Bone Scan and/or CT Madian age=73, Median follow-up=1167 days
- 13 polymorphisms of the genes related to the steroid hormone synthesis and growth factors were genotyped.
 PCR-RFLP for SNPs, or GeneScan for repeat polymorphisms

13 Polymorphisms Analyzed

Gene	Name	Туре	Site	
VDR	Vitamin D receptor	SNP	<i>Bsm</i> l	3' UTR
CYP17		SNP	T-34C	promoter
SRD5A2	5-alpha reductase	SNP	V89L	exon 1
CYP11A1	Side chain cleavage	repeat	(TTTTA)n	promoter
AR	Androgen receptor	repeat	(CAG)n	exon 1
CYP19	Aromatase	repeat	(TTTA)n	intron 4
CCND1	Cyclin D1	SNP	A870G	exon 4
TGF-β1		SNP	T29C	exon 1
IGF-I	Insulin-like growth factor	repeat	(CT)n	promoter
IFGBP3	IGF binding protein	SNP	A-202C	promoter
PSA	Prostate-specific antigen	SNP	A-158G	promoter
EGF	Epidermal growth factor	SNP	G61A	exon 1
Her2/neu	ErbB-2 (HER2)	SNP	I655V	1655V

Polymorphisms with the Significant Results

Gene	Туре		Site	Category
VDR	SNP	<i>Bsm</i> l	3' UTR	bb vs bB/BB
CYP17	SNP	T-34C	promoter	TT vs TC/CC
SRD5A2	SNP	V89L	exon 1	VV vs VL/LL
CYP11A1	repeat	(TTTTA)n	promoter	4 rpts vs no
AR	repeat	(CAG)n	exon 1	24 / + vs <24 rpts
TGF-β1	SNP	T29C	exon1	TT vs. TC/CC
CYP19	repeat	(TTTA)n	intron 4	7 rpts vs. others
CCND1	SNP	A870G	exon 4	AA vs AG/GG
IFGBP3	SNP	A-202C	promoter	AA vs AC/CC
IGF-I	repeat	(CA)n	promoter	=>19 rpts vs. no
PSA	SNP	A-158G	promoter	GG vs GA/AA
EGF	SNP		exon	GG vs GA/AA
Her2/neu	SNP	1655V	1655V	II vs IV/VV

Steroid Hormone Synthetic Pathway and CYP19

Cancer-Specific Survival and CYP19 Polymorphism

Insulin-like Growth Factor -I and Prostate Cancer

- Potent mitogen
- Anti-apoptotic and survival factor in

androgen-deprived conditions

- IGFBP-2, -3, -4, and -5 block IGF-1 action
- The high serum IGF-1 level and the high IGF-1/ IGFBP-3 ratio are risk factors for prostate cancer

Cancer-Specific Survival and IGF-1 Polymorphism

long repeats = 19 repeats or more

Cancer-specific survival

 Patients: 188 PCa patients with bone metastasis at initial diagnosis

	Mean \pm SD	Median
Age (yr)	69.4 ± 8.8	70 (45 - 89)
PSA (ng/ml)	1083 ± 1970	317 (0.2 - 12490)
HGB (g/dl)	13.3 ± 2.0	13.5 (6.2 – 17.4)
ALP (IU/ml)	654 ± 896	308 (7 - 5870)
LDH (IU/ml)	299 ± 183	238 (133 - 1276)
Gleason score	(%)	
7<	15 (8.0)	
7-8	72 (38.3)	
>8	188 (53.7)	

Genotyping

Cancer SNP panel (Illumina®)

- 408 cancer-related genes
- 1421 SNPs selected from "NCI SNP500 Cancer Database"

Mean SNPs/gene	3.5
Median SNPs/gene	3.0
Minimum SNPs/gene	1
Maximum SNPs/gene	23
Total genes	408
Total SNPs	1421

Statistical Analyses

- SNP screening: Comparing cancer-specific survival (CSS) using dominant, recessive and additive models for each variant allele
- Validation of candidate SNPs: Developing a prognostic scoring index to classify high-risk and low-risk groups (a leave-one-out cross validation)
- Multivariate analysis: Using variables
 - Risk group, PSA, HGB, ALP, LDH, Gleason score

Results SNP screening

 14 SNPs in 6 genes were identified to have statistically significant association with the cancer-specific survival with cut-off level of 30% false discovery rate.

> 2q (PSM1, CASP8) 5q (XRCC4, IL13) 10p (GATA3) 12q (IGF1)

Highly Ranked SNPs

Ranking SNP	Chromosome	Gene	Function	
rs2891980	F ~14	VDCC4		
rs1805377	5914	XRUU4	DNA repair	
rs256550				
rs256552				
rs256564	2q31	PMS1	DNA mismatch	
rs256563			Терап	
rs256567				
rs1295686	E~21	11.10	Cutokino	
rs20541	5931	IL13	Суюкіпе	
rs2162679	12q22-24	IGF1	Growth factor	
rs570730			T	
rs10752126	10p14	GATA3	factor	
rs569421			Ιατιοι	
rs2293554	2q33	CASP8	Apoptosis	

Results Validation of candidate SNPs

 Patients were categorized into low and high risk group by a leave-one-out cross validation method for validating the SNPs

CSS of Patients Categorized According to the Number of Risk Genotype

	Univariate analysis		Multivariate analysis	
	HR (95% CI)	Р	HR (95% CI)	Р
Age (<u>></u> 70 vs <70)	1.32	0.224	-	-
PSA (<u>></u> 315 vs <315)	1.41	0.139	-	-
HGB (<u><</u> 13.5 vs <13.5)	1.13	0.617	-	-
ALP (<u>></u> 350 vs <350)	2.88	2.17 E-5	2.52	5.55 E-4
LDH (<u>></u> 500 vs <500)	2.69	1.39 E-3	1.74	0.0897
GS (<u>></u> 9 vs <9)	2.38	2.47 E-4	1.23	5.78 E-3
# of Risk Genotype (4-6 vs 0-3)	3.22	4.67 E-5	3.23	1.63 E-4

- 14 SNPs in 6 genes were identified to have statistically significant association with the CSS.
- The predicting model using the SNPs showed a statistically significant cross-validated accuracy in predicting high- and low-risk groups on the CSS.
- The model may be promising for accurately predicting the outcome and optimizing the individualized treatment in metastatic PCa patients.

Toward the Identification of New Candidate Molecular Targets for Prostate Cancer Progresssion

High-fat Diet Associated Prostate Cancer Progression and Candidate Genes

The association between obesity and prostate cancer is complex and uncertain.....

Freedland SJ and Platz EA: Epidemiologic Reviews 2007

Obesity and Prostate Cancer: Making Sense out of Apparently Conflicting Data

By reviewing 22 prospective studies and 3 recent large studies, it is suggested that

"Obesity may reduce the risk of nonaggressive disease while it may promote aggressive disease."

Obesity and Prostate Cancer Progression

Cytokines and Growth Factors Affecting Diet Induced Carcinogenesis

LNCaP Xenograft Growth under High Fat and Low Fat Diet

High Fat Diet

Low Fat Diet

Narita, Prostate 2008

Representative 9 Genes with More than 2 fold Increase in mRNA Levels by High Fat Diet

Symbol	Name	Fold Increase
MAT1A	Methionine Adenosyltransferase I, alpha	7.36
SLC5A6	Sodium-dependent Vitamin Transporter	4.67
HYOU	Hypoxia Up-regulated 1	4.63
MMP16	Matrix Metalloproteinase 16	4.46
Fn14	TNF Receptor Superfamily, member 12A	3.98
WISP1	WNT1 inducible Signaling Pathway Protein 1	3.80
JTB	Jumping Translocation Breakpoint	3.66
IGF-IR	Insulin-like Growth Factor 1 Receptor	3.43
PMP22	Peripheral Myelin Protein 22	2.52

64 genes were identified by two independent microarray experiments

Narita, Prostate 2008

The TWEAK-Fn14 signaling pathway

Fn14:

Fibroblast Growth Factor Inducible-14 TWEAK receptor (TWEAKR)/Fn14, is a TNF receptor superfamily member

TWEAK :

Tumor necrosis factor-like *weak* inducer of apoptosis A member of the TNF ligand superfamily

TWEAK: not just a weak inducer of apoptosis

Expression of TWEAK and Fn14/TWEAKR in Prostate Cancer Cell Lines

The TWEAK-Fn14 system regulates invasive capacity in PC-3 and DU145 cells

The Effect of Fn14 on Proliferation and Apoptosis in PC-3 cells

Modulation of Invasive Capacity by the TWEAK-Fn14 system through MMP-9 Activation

PC-3 and PC-3/Fn14 Xenograft Tumor Progression and MMP9 Expression *in vivo* Model

High Expression of Fn14/TWEAKR and Poor Outcome after Radical Prostatectomy

Conclusion

- 1) Both Fn14 and TWEAK were expressed in prostate cancer cells.
- 2) Fn14 expression was enhanced by TWEAK.
- 3) The TWAEK-Fn14 system enhanced the proliferation and tumor invasiveness of PCa cells
- 4) The TWAEK-Fn14 system enhanced invasiveness partly through MMP9 activation.
- 5) The high expression of Fn14 correlated with a poor patient outcome after radical prostatectomy.
- 6) The TWEAK-Fn14 system may be a potential target of prostate cancer therapy.
- 7) The relation between high fat diet and Fn14 activation in the progression of PCa remains to be elucidated.

Identification of New Candidate Molecular Targets

Contributers

Akita University Norihiko Tsuchiya Yohei Horikawa Shintaro Narita Takamitsu Inoue

Hirosaki University Chikara Ohyama Shingo Hatakeyama Tohoku University Youichi Arai Seiichi Saito

Kyoto University Osamu Ogawa Toshiyuki Kamoto Hiroyuki Nishiyama

Chiba University Tomohiko Ichikawa Hiroyoshi Suzuki

Fn14 /TWEAKR and the TWEAK-Fn14 System

